YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
نویسندگان
چکیده
The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to complete the task. The CNN-LSTM model has two combined parts: CNN extracts local n-gram features within tweets and LSTM composes the features to capture longdistance dependency across tweets. Our submission ranked tenth among twenty two teams by average correlation scores on prediction intensity for all four types of emotions.
منابع مشابه
YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification
In this paper, we propose a multi-channel convolutional neural network-long shortterm memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Unlike a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features i...
متن کاملYZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competitio...
متن کاملTextmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets
This paper describes our approach to the Emotion Intensity shared task. A parallel architecture of Convolutional Neural Network (CNN) and Long short term memory networks (LSTM) alongwith two sets of features are extracted which aid the network in judging emotion intensity. Experiments on different models and various features sets are described and analysis on results has also been presented.
متن کاملDimensional Sentiment Analysis Using a Regional CNN-LSTM Model
Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...
متن کاملYNU-HPCC at IJCNLP-2017 Task 5: Multi-choice Question Answering in Exams Using an Attention-based LSTM Model
A shared task is a typical question answering task that aims to test how accurately the participants can answer the questions in exams. Typically, for each question, there are four candidate answers, and only one of the answers is correct. The existing methods for such a task usually implement a recurrent neural network (RNN) or long short-term memory (LSTM). However, both RNN and LSTM are bias...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017